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ABSTRACT

Recently, Ising-Vannimenus model on the Cayley tree of order k = 3 has
been studied by Akin (2017) in real case. In this study we continue to
investigate Ising-Vannimenus model on the Cayley tree of order k = 3
in p-adic sense. We investigate the dynamic aspects of p-adic Ising-
Vannimenus model on the Cayley tree of order k = 3. We show that the
recurrent equation 26, is associated to the model, has four non-trivial
�xed points. And one of the �xed points lies in Ep and the rest of �xed
points lie in Z?

p. As a main result of the paper, we show that the �xed
point u0 is attractive and the other �xed points u1, u2, u3 are repellent
when ui = p− 1, and neutral when ui 6= p− 1.

Keywords: p-adic Gibbs measures, p-adic dynamical systems, Ising-
Vannimenus model and Cayley tree.
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1. Introduction

It is clear that Ising Vannimenus (see Vannimenus (1981)) model is one of
the most crucial models in statistical mechanics. In this work we continue the
investigation of Ising-Vannimenus model on the Cayley tree of order k = 3. In
recent studies, existence of p-adic quasi Gibbs measures and phase transition
were studied in (Mukhamedov et al. (2016), Mukhamedov et al. (2014)) for the
p-adic Ising-Vannimenus model with competing interactions of nearest, next-
nearest and prolonged next-nearest neighbors on the Cayley tree of order k = 2.
In this work, we study the dynamic behaviors of �xed points of p-adic Ising-
Vannimenus model with competing interactions of nearest and prolonged next-
nearest neighbors on the Cayley tree of order k = 3.

We consider Hamiltonian (Hn : ΩVn
→ Qp) of the p-adic Ising-Vannimenus

model as follows;

H(σ) = −J
∑
<x,y>

σ(x)σ(y)− Jp
∑
>x,y<

σ(x)σ(y), (1)

and J, Jp ∈ Qp are coupling constants of nearest-neighbor, and prolonged next-
nearest-neighbors potentials, respectively. In this paper we cosider J, Jp 6= 0,
i.e. J · Jp 6= 0. The uniqueness of p-adic Gibbs measures in real case was
studied in Akin (2017) for the model. In this work, we prove the existence
of translation invariant p-adic Gibbs measures and dynamic behaviors of �xed
points in p-adic setting by analyzing the �xed points of dynamical system;

g(u) =

(
1 + cdu

d+ cu

)3

. (2)

Note that the results of this paper fails in real setting.

2. Preliminaries

2.1 p-Adic Numbers

In what follows p is a �xed prime number, and Qp denotes the �eld of p-adic
numbers, established by completion of Q with respect to p-adic absolute value
|·|p. This norm is called non-Archimedean, and satis�es the ultrametric triangle
inequality;

|x+ y|p ≤ max{|x|p, |y|p}. (3)
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Any nonzero p-adic number x ∈ Qp can be uniquely shown as

x = pγ(x)(x0 + x1p+ x2p
2 + ...), (4)

where γ = γ(x) ∈ Z, and xj are integers such that 0 ≤ xj ≤ p − 1, x0 > 0,
j = 0, 1, 2, . . . . Here the norm of x is de�ned by |x|p = p−γ(x).

The p-adic logarithm is de�ned by

logp(x) = logp(1 + (x− 1)) =

∞∑
n=1

(−1)n+1 (x− 1)n

n
, (5)

and converges when x ∈ B(1, 1),

and p-adic exponentials are de�ned by

expp(x) =

∞∑
n=1

xn

n!
, (6)

and converges when x ∈ B(0, p−1/(p−1)).

Lemma 2.1. Koblitz (1977),Vladimirov et al. (1994) Let x ∈ B(0, p−1/(p−1))
then we have

| expp(x)|p = 1, | expp(x)− 1|p = |x|p < 1, | logp(1 + x)|p = |x|p < p−1/(p−1)

and
logp(expp(x)) = x, expp(logp(1 + x)) = 1 + x.

Lemma 2.2. Khrennikov et al. (2007) If |ai|p ≤ 1, |bi|p ≤ 1, i = 1, . . . , n,
then ∣∣∣∣ n∏

i=1

ai −
n∏
i=1

bi

∣∣∣∣
p

≤ max
i≤n
{|ai − bi|p}. (7)

We denote the following set,

Ep = {x ∈ Qp : |x|p = 1, |x− 1|p < p−1/(p−1)}. (8)

So, from Lemma-2.1 one concludes that if x ∈ Ep, then there is an element
h ∈ B(0, p−1/(p−1)) such that x = expp(h). Note that the fundamentals of
p-adic analysis, p-adic mathematical physics were explained in Koblitz (1977),
Mahler (1981), Rozikov (2013), Schikhof (1984), Vladimirov et al. (1994).

The p-adic integers are de�ned by

Zp = {x ∈ Qp :| x |p≤ 1} , (9)

and the set Z?p = Zp − pZp is called p-adic units.
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2.2 Dynamical Systems in Qp

In this subsection we brie�y recall some standard terminology of theory of
dynamical systems (see Khrennikov and Nilsson (2004)). We de�ne following
sets,

Br(a) = {x ∈ Qp : |x− a|p < r}, B̄r(a) = {x ∈ Qp : |x− a|p ≤ r},(10)
Br(a) = {x ∈ Qp : ρ < |x− a|p < s}.Sr(a) = {x ∈ Qp : |x− a|p = r}.(11)

for r, s > 0 (r < s) and a ∈ Qp. It is clear that B̄r(a) = Br(a) ∪ Sr(a).

A function f : Br(a)→ Qp is said to be analytic if it can be represented by

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n, f ∈ Qp (12)

and converges uniformly on the ball Br(a).

Consider a dynamical system (f,B) in Qp, where f : x ∈ B → f(x) ∈ B
is an analytic function and B = Br(a) or Qp (as given above). We denote
x(n) = fn(x(0)), where x0 ∈ B and fn(x) = f ◦ · · · ◦ f(x)︸ ︷︷ ︸

n

.

If f(x(0)) = x(0) then x(0) is called a �xed point.

Let x(0) be a �xed point of an analytic function f(x) then,

λ =
d

dx
(f(x(0))),

is a formal derivative of f . Then the �xed point x(0) is called attractive when
0 ≤ |λ|p < 1, indi�erent or neutral when |λ|p = 1, and repellent when |λ|p > 1.

2.3 p-Adic Measure

Let (X,B) be a measurable space, where B is an algebra of subsets X. A
function µ : B → Qp is said to be a p-adic measure if the following equality
holds;

µ

( n⋃
j=1

Aj

)
=

n∑
j=1

µ(Aj), (13)

for any A1, . . . , An ⊂ B, and Ai ∩Aj = ∅ (i 6= j).

A p-adic measure is called a probability measure if µ(X) = 1.
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2.4 Cayley Tree

Let Γk+ = (V,L) be a semi-in�nite Cayley tree of order k ≥ 1 with the root x(0)

(Each vertex has exactly k+1 edges, except x(0) which has k edges). Here V , L
are the set of vertices and the set of edges respectively. The vertices x and y are
called nearest neighbors if there exists an edge connecting them i.e. d(x, y) = 1,
and they are denoted by l =< x, y >. Two vertices x, y ∈ V are called next-
nearest neighbors, if d(x, y) = 2. And the next-nearest-neighbors x and y are
called prolonged next-nearest neighbors whenever x ∈ Wn−2 and y ∈ Wn, and
denoted by > x, y <, or one-level next-nearest-neighbors, if x, y ∈Wn for some
n and denoted by > x, y <. Here Wn is the nth level of Cayley tree, and we
determine following sets;

Wn =
{
x ∈ V | d(x, x(0)) = n

}
,

n⋃
m=1

Wm, Ln = {l =< x, y >∈ L | x, y ∈ Vn} .

The set of direct successors of x is de�ned by

S(x) = {y ∈Wn+1 : d(x, y) = 1, x ∈Wn} .

Recall that any vertex x 6= x(0) has k + 1 direct successors except x(0) which
has k.

3. p-adic Ising-Vannimenus (IV) model and
p-adic Gibbs measures

In this section, we consider the p-adic Ising-Vannimenus model such that
spin values σ(x) are from the set Φ = {−1,+1}, (Φ is called a state space),
and these values are assigned to the vertices of Cayley tree Γk = (V,Λ). A
con�guration σ on V is de�ned as a function such that f : x ∈ V → σ(x) ∈ Φ.
Using a similar manner one can be de�ned con�gurations σn and ω on Vn
and Wn, respectively. The set of all con�gurations on V (resp. Vn, Wn)
coincides with Ω = ΦV (resp. ΩVn

= ΦVn ,ΩWn
= ΦWn). One can see that

ΩVn = ΩVn−1 × ΩWn , and we de�ne their concatenations as follows;

(σn−1 ∨ ω)(x) =

{
σn−1(x), if x ∈ Vn−1,
ω(x), if x ∈Wn,

for con�gurations σn−1 ∈ ΩVn−1
and ω ∈ ΩWn

. It is clear that σn−1∨ω ∈ ΩVn
.
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The Hamiltonian (Hn : ΩVn
→ Qp) of the p-adic Ising-Vannimenus model

is de�ned as follows;

H(σ) = −J
∑
<x,y>

σ(x)σ(y)− Jp
∑
>x,y<

σ(x)σ(y), (14)

with interactions of the nearest-neighbors, and next-nearest-neighbors respec-
tively. Here J, Jp ∈ Qp are coupling constants.

Let h :< x, y >→ hxy = (hxy,++, hxy,+−, hxy,−+, hxy,−−) ∈ Q4
p be a vector

valued function on each edge, L. We consider a p-adic probability measure

µ
(n)
h (σ) on ΩVn

is de�ned by

µ
(n)
h (σ) =

1

Zn
expp[−βHn(σ) +

∑
x∈Wn−1

∑
y∈S(x)

σ(x)σ(y)hxy,σ(x)σ(y)], (15)

for an n ∈ N, and β = 1
kT (Boltzmann constant, k, and temperature, T ). Here,

σn : x ∈ Vn → σn(x) is a function, and Zn is a partition function as follows;

Zn =
∑

σn∈ΩVn

expp[−βH(σn) +
∑

x∈Wn−1

∑
y∈S(x)

σ(x)σ(y)hxy,σ(x)σ(y)]. (16)

We consider increasing subsets of the set of states for one dimensional lat-
tices Fannes and Verbeure (1984) as G1 ⊂ G2 ⊂ ... ⊂ Gn ⊂ ..., where Gn is the
set of states corresponding to non-trivial correlations between n-successive lat-
tice points. G1 is the set of main �eld states; and G2 is the set of Bethe-Peierls
states, the latter extending to the so-called Bethe lattices. In the probability
theory, all these states correspond to so-called Markov chains with memory
of length n. In this paper, we will discuss a new method of de�ning Markov
chains with memory length of two on a Cayley tree of order three in the p-adic
sense using the methods described by Akin (2017) (see for details Fannes and
Verbeure (1984)).

Let x ∈Wn−1 for some n ∈ N and S(x) = {y, z, w}, where y, z, w ∈Wn are
the direct successors of x. Note that B1(x) = {x, y, z, w} is a unit semi-ball with
a center x, where S(x) = {y, z, w}. We denote the set of all spin con�gurations
on Vn by ΦVn and the set of all con�gurations on unit semi-ball B1(x) by
ΦB1(x). One can get that the set ΦB1(x) consists of sixteen con�gurations;

ΦB1(x) =

{(
l k j

i

)
: i, j, k, l ∈ {−1,+1}

}
. (17)

Brie�y, we do an appropriate de�nition for the quantities h

(
z, y, w
x

)
as

hB1(x).
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In this work we consider h : V \ {x(0)} × V \ {x(0)} × V \ {x(0)} → QΦ
p is a

mapping such that

h :< x, y, z, w >→ hB1(x) = (hB1(x),σ(x)σ(y)σ(z)σ(w) : σ(i) ∈ {±1}), (18)

where hB1(x),σ(x)σ(y)σ(z)σ(w) ∈ Qp, x ∈ Wn−1 and y, z, w ∈ S(x). As a result,
we use the function hxyzw,σ(x)σ(y)σ(z)σ(w) to de�ne the Gibbs measure of any

con�guration

(
σ(z) σ(y) σ(w)

σ(x)

)
that belongs to ΦB1(x).

In this section, we present the general structure of Gibbs measures with
memory length of two on the Cayley tree of order k = 3. An arbitrary edge
< x(0), x1 >= ` ∈ L deleted from a Cayley tree Γk1 and Γk0 splits into two
components: semi-in�nite Cayley tree Γk1 and semi-in�nite Cayley tree Γk0 .

We de�ne the �nite-dimensional Gibbs probability distributions on the con-
�guration space ΩVn = {σn = {σ(x) = ±1, x ∈ Vn}} as follows;

µ
(n)
h (σ) =

1

Zn
expp[−βHn(σ)+

∑
x∈Wn−1

∑
y,z,w∈S(x)

σ(x)σ(y)σ(z)σ(w)hB1(x),σ(x)σ(y)σ(z)σ(w)].

(19)
with corresponding partition function which is de�ned by

Zn =
∑

σn∈ΩVn

expp[−βH(σn)+
∑

x∈Wn−1

∑
y,z,w∈S(x)

σ(x)σ(y)σ(z)σ(w)hB1(x),σ(x)σ(y)σ(z)σ(w)],

where β = 1
kT . We obtain a new set of p-adic Gibbs measures which is di�erent

from previous studies Akin (2017), Ganikhodjaev et al. (2011). We consider
a construction of an in�nite volume distribution with given �nite-dimensional
distributions. More exactly, we will attempt to �nd a probability measure µ

on Ω which is compatible with given measures µ
(n)
h , i.e.

µ(σ ∈ Ω : σ|Vn
= σn) = µ

(n)
h (σn), for all σn ∈ ΩVn

, n ∈ N. (20)

Kolmogorov consistency condition for µnh(σn), n ≥ 1 is de�ned as follows∑
ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) = µ

(n−1)
h (σn−1), (21)

for any σn−1 ∈ ΩVn−1
.

This condition implies the existence of a unique measure µh de�ned on Ω
with a required condition (20). Such a measure µh is called a Gibbs measure
with memory length of two for the considered model. We de�ne interaction
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energy on V with inner con�guration σn−1 ∈ Vn−1 and boundary condition
η ∈Wn as follows;

Hn(σn−1 ∨ η) = −J
∑

<x,y>∈Vn−1

σ(x)σ(y)− J
∑

x∈Wn−1

∑
y∈S(x)

σ(x)η(y)

−Jp
∑

>x,y<∈Vn−1

σ(x)σ(y)− Jp
∑

x∈Wn−2

∑
z∈S2(x)

σ(x)η(z)

= Hn(σn−1)− J
∑

x∈Wn−1

∑
y∈S(x)

σ(x)η(y)

− Jp
∑

x∈Wn−2

∑
z∈S2(x)

σ(x)η(z). (22)

If we follow the same processes as in Akin (2017), then easily we can get
the following basic equations. And we express the vector-valued function given
in (18) as follows:

h(x) = (h1, h2, h3, h4, h5, h6, h7, h8). (23)

Assume that a = pβJ and b = pβJp , u′i = phB1(x) for x ∈ Wn−1 and
ui = phB1(x) for x ∈Wn.

For simplicity, when we apply the same technique like in Akin (2017), then
we get the following nonlinear dynamical function;

f(x) =

(
1 + (ab)2v4

4

b2 + a2v4
5

)3

. (24)

To reduce (24), we consider that p
2J
T = a2 = c and p

2Jp
T = b2 = d, where

T is an absolute temperature. Therefore, (24) is conjugate to the following
function;

g(x) =

(
1 + cdx

d+ cx

)3

. (25)

Hereafter we analyze the equation (25) for the existence of transition in-
variant p-adic Gibbs measures for the considered model.

4. Translation-invariant p-adic Gibbs measures

In this section, we investigate the existence of translation-invariant p-adic
Gibbs measures (TIpGM) through analyzing the equation (25). Note that a
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function h = {h
B1(x),σ

(1)
i

: i ∈ {1, 2, . . . , 16}} is considered as translation-

invariant, if h
B1(x),σ

(1)
i

= h
B1(y),σ

(1)
i

for all y ∈ S(x) and i ∈ {1, 2, . . . , 16}. A

translation-invariant Gibbs measure is de�ned as a measure µh corresponding
to a translation-invariant function h (see for details Ganikhodjaev et al. (2011),
Rozikov (2013)).

After obtaining the equation (25), the existence of p-adic Gibbs measures
is reduced to the existence of the �xed points of (25). Therefore, to show
the existence of p-adic Gibbs measures for all p > 3, we analyze the following
equation (26) which is obtained from (25) with assuming x = u,

g(u) =

(
1 + cdu

d+ cu

)3

(26)

where c, d ∈ Ep.

We state the following Proposotion 4.1 to show the existence of p-adic Gibbs
measures.

Proposition 4.1. Let p > 3, if u, v ∈ Ep then following statements hold;

i. g(Ep) ⊂ Ep, and

ii. | g(u)− g(v) |p≤ 1
p | u− v |p .

Proof. Let c, d, u ∈ Ep, and using strong triangle inequality, Lemma 2.1 and
Lemma 2.2, then easily we get the following items.

i. Let

| g(u) |p=

∣∣∣∣∣
(

1 + cdu

d+ cu

)3
∣∣∣∣∣
p

=
|1 + cdu|3p
|d+ cu|3p

=
|(cdu− 1) + 2|3p

|(d− 1) + (cu− 1) + 2|3p
= 1.

Then | g(u) |p= 1, u ∈ Ep.
We show the inequality below,

|g(u)− 1|p = |(1 + cdu

d+ cu
)3 − 1|p

= | |1 + 3cdu+ 3c2d2u2 + c3d3u3 − d3 − 3cd2u− 3c2du2 − c3u3|p
|(d− 1) + (cu− 1) + 2|3p

≤ 1

p
< 1.
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Hence g(u) ∈ Ep since (8).

ii. Let u, v ∈ Ep then the following inequality holds;

|g(u)− g(v)|p =

∣∣∣∣∣
(

1 + cdu

d+ cu

)3

−
(

1 + cdv

d+ cv

)3
∣∣∣∣∣
p

=
∣∣(1 + cdu)3(d+ cv)3 − (1 + cdv)3(d+ cu)3

∣∣
p

=
∣∣(cd2 − c)(u− v)

∣∣
p

≤ 1
p | u− v |p .

Hence the proof is completed.

From the Propostion4.1, the function g satis�es the Banach contraction
principle. This means that (26) has a �xed point u0 ∈ Ep. To �nd out the
other �xed points of (26), let u = g(u) then one gets;

c3u4 + (3c3d− c3d3)u3 + (3cd2 − 3c2d2)u2 + (d3 − 3cd)u− 1 = 0 (27)

where c, d ∈ Ep. It is clear that (27) has a solution u0 ∈ Ep since Proposition
4.1 then we rewrite (27) as follows;

(u− u0)[c3u3 + (3c2d− c3d3 − c3u0)u2 +Au+B] = 0 (28)

where
A = 3d2c+ 3c2du0 − 3c2d2 − c3d3u0 − c3u2

0

and
B = d3 + 3d2cu0 + 3c2du2

0 − 3cd− 3c2d2u0 − c3d3u2
0 − c3u3

0.

One of the �xed points of (27) is u0 ∈ Ep and to �nd the other �xed points
of (27) we solve the equation below;

c3u3 + (3c2d− c3d3 − c3u0)u2 +Au+B = 0, (29)

where c, d, u0 ∈ Ep. When we divide both sides of (29) by c3 then one gets;

u3 + (
3c2d− c3d3

c3
)u2 +

A

c3
u+

B

c3
= 0. (30)

In (30) let a = 3c−1d− d3−u0, b = 3c−2d2 + 3c−1du0− 3c−1d2− d3u0−u2
0

and

e =
d3 + 3cd2u0 + 3c2du2

0 − 3cd− 3c2d2u0 − c3d3u2
0 − u3

0

c3
,
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then we obtain the following equation;

u3 + au2 + bu+ e = 0. (31)

When we apply the transformation of u = u − a
3 then we get the depressed

cubic equation;

u3 + (b− 1

3
a2)u− (

2

27
a3 − 1

3
ab+ e) = 0. (32)

Let ã = b− 1
3a

2, b̃ = 2
27a

3 − 1
3ab+ e then one gets

u3 + ãu− b̃ = 0. (33)

Hereafter we investigate the existence and number of solutions of depressed
equation (33) in Z?p, Zp, Qp with p > 3 as in Mukhamedov and Omirov (2014b)
and Saburov and Khameini (2015).

Any non-zero p-adic number x ∈ Qp can be uniquely represented by x =
x?

|x|p . Hence, we can represent ã = ã?

|ã|p , and b̃ = b̃?

|b̃|p
where ã? = a0 + a1p +

a2p
2 + ..., b̃? = b0 + b1p+ b2p

2 + ..., for any non-zero ã, b̃.

Let D0 = −4a3
0 − 27b20 and un+3 = b0un − a0un+1 with u1 = 0, u2 = −a0,

and u3 = b0 for n = 1, p− 3. Accordingly we �nd the �xed points of (33)
through following proposition.

Proposition 4.2. Mukhamedov and Omirov (2014a) Let p > 3 be a prime.
If |ã|p = |b̃|p = 1 and |D|p = 1 then (33) has three solutions in Z?p, where

ã, b̃ ∈ Qp with ãb̃ 6= 0 and D = −4ã3 − 27b̃2.

Proof. Using strong triangle inequality and Lemma 2.1

i. Let

|ã|p = |b− 1

3
a2|p

= |9c
4d2 + 9c5du0 − 9c5d2 − 3c6d3u0 − 3c6u2

0 − 9c2d2 − c6d6 + 6c4d4

3c6
|p

=
|9c4d2 + 9c5du0 − 9c5d2 − 3c6d3u0 − 3c6u2

0 − 9c2d2 − c6d6 + 6c4d4|p
|3c6|p

= 1.
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ii. Let

|b̃|p =| 2

27
a3 − 1

3
ab+ e|p

=| 2

27
(
3cd− c3d3

c3

3

)

+
d3 + 3cd2u0 + 3c2du2

0 − 3cd− 3c2d2u0 − c3d3u0 − u3
0

c3

− 1

3

9c2d3 + 9c3d2u0 − 9c3d3 − 3c4d4u0 − 3c4du2
0 − 3c4d5

c6
|p

+
1

3

−3c5d4u0 + 3c5d5 + c6d6u0 + c6d3u2
0

c6
|p

= max{| 2

27
(
3cd− c3d3

c3

3

)|p, |

d3 + 3cd2u0 + 3c2du2
0 − 3cd− 3c2d2u0 − c3d3u0 − u3

0

c3
|p, |

1

3

9c2d3 + 9c3d2u0 − 9c3d3 − 3c4d4u0 − 3c4du2
0

c6

+
1

3

−3c4d5 − 3c5d4u0 + 3c5d5 + c6d6u0 + c6d3u2
0

c6
|p

=1.

iii. Let

|D|p = | − 4ã3 − 27b̃2|p
= max{| − 4ã3|p, |27b̃2|p}
= 1

From [i], [ii] and [iii] we obtain the required one.

Consequently, the depressed equation (33) has three non-trivial �xed points
in Z?p. So (26) has one �xed point in Ep and three non-trivial �xed points in
Z?p. This result yields the existence of translation invariant p-adic quasi Gibbs
measures.
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5. Dynamic Behavior of Fixed Points of
Dynamical System

In this section, we investigate the dynamic behavior of the �xed points of
(26). In the previous section we proved that the equation (26) has one �xed
point in Ep and three �xed points in Z?p. Here we are going to determine that
the �xed points of (26) are attractive, repellent or neutral. To achieve this we
state following theorem.

Theorem 5.1. Let c, d ∈ Ep and p > 3. The function f (26) has four �xed
points u0, u1, u2, u3 such that u0 is attractive, the �xed points u1, u2, u3 are
repellent, if ui = p− 1, and neutral, if ui 6= p− 1, for i = 1, 2, 3, where u0 ∈ Ep
and u1, u2, u3 ∈ Z?p.

Before starting the proof of theorem, we need to state the lemma below.

Lemma 5.2. If u1, u2, u3 ∈ Z?p then following statements hold;

i. |1 + ui|p ≤ 1
p if ui = p− 1,

ii. |1 + ui|p = 1 if ui 6= p− 1,

where |u1|p = |u2|p = |u3|p = 1 and i = 1, 2, 3.

Proof. i. Let ui = p− 1 then it is clear that

|1 + ui|p = |p|p =
1

p
.

ii. Let ui 6= p− 1 then it is clear that

|1 + ui|p = 1.

since p - (1 + ui)

Now we are ready to prove Theorem 5.1.

Proof. Since (26) let

g(u) =

(
1 + cdu

d+ cu

)3
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then we get derivative of g as follows;

g′(u) = 3
cd2 + 2c2d3u+ c3d4u2 − c− 2c2du− c3d2u2

(d+ cu)4
.

where c, d ∈ Ep. Thereafter one gets;

|g′(u0)|p =
|3cd2 + 6c2d3u0 + 3c3d4u2

0 − 3c− 6c2du0 − 3c3d2u2
0|p

|d+ cu0|4p
= |3(cd2 − 1) + 3 + 6(c2d3u0 − 1) + 6 + 3(c3d4u2

0 − 1) + 3

− 3(c− 1)− 3− 6(c2du0 − 1)− 6− 3(c3d2u2
0 − 1)− 3|p

= |3 + 6 + 3− 3− 6− 3|p = 0.

Therefore, u0 is an attractive.

Now let us look for the dynamic behaviors of other �xed points u1, u2, u3 ∈
Z?p. From Lemma 5.2 and ultrametric triangle inequality we get the items
below.

i. Let us take ui ∈ Z?p, i = 1, 2, 3 and ui = p− 1 then we get

|g′(ui)|p =
|3cd2 + 6c2d3ui + 3c3d4u2

i − 3c− 6c2dui − 3c3d2u2
i |p

|d+ cui|4p

=
|(1 + ui)

2 − (1 + ui)|p
|1 + ui|4p

=
|(1 + ui)|p
|1 + ui|4p

=
1

|1 + ui|3p
> 1.

Therefore ui are repellent in the considered case ui = p− 1.

ii. Let us take ui ∈ Z?p, i = 1, 2, 3 and ui 6= p− 1 then we easily get

|g′(ui)|p =
|3cd2 + 6c2d3ui + 3c3d4u2

i − 3c− 6c2dui − 3c3d2u2
i |p

|d+ cui|4p

=
|(1 + ui)

2 − (1 + ui)|p
|1 + ui|4p

=
|(1 + ui)|p
|1 + ui|4p

= 1.
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Hence ui are neutral in the case of ui 6= p− 1.

Consequently, we conclude that u0 is an attractive, ui are repellent when
ui = p− 1 and ui are neutral when ui 6= p− 1 for the function (26).

6. Conclusion

In the present paper, we obtained the dynamic function (26) as in Akin
(2017) and then we proved the existence of the translation invariant p-adic
Gibbs measures for p-adic Ising-Vannimenus model on the Cayley tree of order
k = 3. We found out that one of �xed points of (26) lies in Ep and the other
three �xed points lie in Z?p. As the dynamic behaviours of the model, we
proved that the �xed point u0 ∈ Ep is attractive and the other �xed points
ui ∈ Z?p, i = 1, 2, 3 are repellent when ui = p − 1, and are neutral when
ui 6= p− 1.
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